
The Removers'libraries documentation

(a work supported by Jagware)

Seb/The Removers∗

June 25, 2006

Abstract

You will �nd here the documentation of the Removers'libraries. Their
goal is to ease the game writing process on the Atari Jaguar.

Preamble

First of all, I would like to send warmful greetings to all the Jagware team
(http://www.jagware.org/). I hope these libraries will really help in the
creation of 2D games for this wonderful Atari console.

Licence

The Removers' libraries are distributed under the terms of the new BSD
License. The following copyright notice applies to every �le1 of the li-
braries:

Copyright (c) 2006, Seb/The Removers

http://removers.atari.org

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

* Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

* Neither the name of the Removers nor the names of its contributors

may be used to endorse or promote products derived from this software

without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

∗http://removers.atari.org
1except jaguar.inc

1

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICESLOSS OF USE,

DATA, OR PROFITSOR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1 Quick overview of the libraries

The Removers'libraries are composed of several components that are in-
tended to help the game programmer. These libraries have been written
essentially in 68k assembler but some crucial parts have been written in
GPU assembler. It is to be used with mac assembler by Brainstorm.

The libraries include:

1. Initialisation routines

2. Memory manager

3. Object list manager

4. Sprite manager

5. Joypad manager

6. Pseudo-random numbers generator

We will now go through each of the library.

2 Initialisation Routines

Smile, this part is the less polished one. We intend to improve greatly
this part thanks to the experiment made by Zerosquare with the video
registers.

2.1 De�ned procedures

2.1.1 IntIni

This procedure was given by Atari. It initialises interruptions. The pro-
cedure VblRoutine is used as generic VBL routine (see below).

2.1.2 VideoIni

Once again, this procedure was given by Atari. It initialises the video sys-
tem and sets some variables: height, a_vdb, a_vde, width, a_hdb,
a_hde.

2.1.3 VblRoutine (generic)

This is the generic routine which is called every VBL. If the variable
VblRoutineAddr is not null, then this variable gives the address of
a custom routine which will be called by VblRoutine. This customised
routine should preserve every single register except maybe d0 and a0.

Moreover, this procedure clears the variable VblFlag.

2

2.1.4 WaitVbl

This procedure waits for the next VBL to occur. Of course, it uses the
variable VblFlag to do this synchronisation. It is a just a boolean �ag,
not a VBL counter.

2.1.5 copy_code

This procedure is intended to copy tiny piece of data (typically a GPU
routine). The register d0 contains the size in bytes of the data (which
must be long-word aligned), the register a0 contains the address of the
data to be copied (word aligned), and the register a1 contains the address
where to copy these data. Beware that when copying code in the GPU
memory, the target address should be long word aligned also.

2.2 De�ned macros

2.2.1 init_prog_state

This macro expands to the code (given by Atari) which should begin every
single Jaguar program. It is a macro because at this point, the stack is
not initialised.

2.2.2 installVblRoutine (custom Vbl routine)

The �rst argument is used to �ll the variable VblRoutineAddr.

2.2.3 clearVblRoutine (custom Vbl routine)

This macro clears the variable VblRoutineAddr.

2.3 Variables

• height

• a_vdb

• a_vde

• width

• a_hdb

• a_hde

• VblFlag

• VblRoutineAddr

3 The Memory Manager

The memory manager has been written in order to ease memory manage-
ment on the Jaguar. Indeed, you have to know that most every piece of
data should be at least phrase aligned, when not double-phrase or quad-
phrase aligned. Thanks to the memory manager, you will not be annoyed
with this technical detail because every piece of memory allocated with
the memory manager is quad-phrase2 aligned. This memory manager is
quite rudimentary but it implements basic functions.

2a phrase is 64 bits long, a quad phrase is 4 phrases

3

3.1 De�ned procedures

3.1.1 mm_init

This is where all begin. This initialises the memory manager. The register
a0 contains the start address of the heap and the register a1 contains the
end address of the heap.

3.1.2 mm_reset

This reinitialises the memory manager with the initial values (it is a fast
way to free every allocated blocks).

3.1.3 mm_alloc and mm_alloc_clear

These procedures allocate a memory block in the heap. As previously
said, the allocated block is quad phrase aligned. In input, the register
d0 contains the desired size of the block and in output, the register a0
contains the address of the allocated block. If it is not possible to allocate
such a block, the program is stopped by the illegal3 instruction.

In addition, the procedure mm_alloc_clear (slowly) clears the allo-
cated bu�er.

3.1.4 mm_free

This procedure is called when one wants to free a previously allocated
block. In input, the register a0 contains the address of the block. You
have to be aware that no special sanity check is performed and thus, the
behaviour is unpredictable if the given address is not the address of a
previously (and still) allocated block.

3.2 Variables

• mm_free_blocks

• mm_start_address

• mm_end_address

4 The Object List Manager

The object list manager de�nes some procedures and macros which eases
the manipulation of object lists as used by the Object Processor (OP).
For the moment, GPU objects and STOP objects cannot be dynamically
created (the management of GPU objects is left as future work). Sprites
are abstracted with a very rich data structure which should ease greatly
the work of the programmer. The object list manager of course uses
the memory manager to dynamically create objetcs. This library can be
used as is (like in the Atomic game or the other early production of The
Removers) or in conjunction with the sprite manager. Despite the refresh
mecanisms o�ered by this library are quite rudimentary, it is su�cient for
a game like Atomic. Note that some of the features described there can
only be used through the sprite manager (in particular animated sprites
or y < 0).

3it thus gives you hand back in the debugger

4

As the representation of sprites is central there, we �rst examine the
data structure that abstracts sprites.

4.1 Sprite object representation

In the following, we use de�ned values in the Atari documentation.

.offset 0

SPRITE_OBJ: ds.b OBJECT_SIZEOF

SPRITE_RESTORE: ds.l 2

SPRITE_DATA: ds.l 1

SPRITE_PITCH: ds.l 1

SPRITE_RELEASE_TRANS_RMW_REFLECT: ds.l 1

SPRITE_TYPE: ds.w 1

SPRITE_DEPTH: ds.w 1

SPRITE_IWIDTH: ds.w 1

.long

SPRITE_XPOS: ds.w 1

SPRITE_YPOS: ds.w 1

SPRITE_DWIDTH: ds.w 1

SPRITE_HEIGHT: ds.w 1

SPRITE_INDEX: ds.w 1

SPRITE_FIRSTPIX: ds.w 1

.long

SPRITE_ZOOM_DATA: ds.b 1

SPRITE_REMAINDER: ds.b 1

SPRITE_VSCALE: ds.b 1

SPRITE_HSCALE: ds.b 1

SPRITE_ANIM_ARRAY: ds.l 1

SPRITE_ANIM_DATA:

SPRITE_ANIM_COUNTER: ds.b 1

SPRITE_ANIM_SPEED: ds.b 1

SPRITE_ANIM_INDEX: ds.w 1

1. SPRITE_OBJ is the common header for every objects handled by the
object list manager (private). This is in fact the objects as seen by
the OP (and some more stu� to help the sprite manager in its task).

2. SPRITE_RESTORE is used by the object list manager to quickly refresh
sprites (private)

3. SPRITE_DATA is the address of the graphics data (phrase aligned) of
the sprite

4. SPRITE_PITCH de�nes how much data must be skipped (see TechRef
Manual). The possible values are O_NOGAP, O_1GAP, O_2GAP, ...,
O_6GAP

5. SPRITE_RELEASE_TRANS_RMW_REFLECT is the disjunction of the �ags
O_RELEASE, O_TRANS, O_RMW and/or O_REFLECT. The three interesting
�ags are O_TRANS for transparent sprites, O_RMW for saturated sprites
(you can do blobs with this) and O_REFLECT for �ipped sprites.

6. SPRITE_TYPE indicates the type of the sprite: either normal or scaled.
The possible values are BITOBJ or SCBITOBJ.

5

7. SPRITE_DEPTH indicates the depth of the graphical data. The possi-
ble values are O_DEPTH1, O_DEPTH2, ..., O_DEPTH32.

8. SPRITE_IWIDTH gives the sprite width in phrases.

9. SPRITE_XPOS gives the X-coordinate of the sprite. It can be either
negative or positive.

10. SPRITE_YPOS gives the Y-coordinate of the sprite. It can be either
negative or positive (but negative Y-coordinate are best managed
by the sprite manager (see below)).

11. SPRITE_DWIDTH gives the data width in phrases.

12. SPRITE_INDEX gives the start index in the CLUT for low-resolution
sprites.

13. SPRITE_FIRSTPIX gives the �rst pair of pixels to display.

14. SPRITE_REMAINDER gives the Y-remainder for scaled sprites.

15. SPRITE_VSCALE gives the vertical scale for scaled sprites.

16. SPRITE_HSCALE gives the horizontal scale for scaled sprites.

17. SPRITE_ANIM_ARRAY gives, for animated sprites, the address of an
array giving the address of the graphical data for each sprite of the
animation (which must have all the same dimensions)

18. SPRITE_ANIM_COUNTER is a counter used to animate sprites. When
it reaches 0, the next sprite in the array is used. The unit is a VBL.

19. SPRITE_ANIM_SPEED de�nes the speed of the animation.

20. SPRITE_ANIM_INDEX gives the index (15 lower bits) in the array of
the next sprite to be displayed (the �rst sprite has index 0 or n + 1
where n is the size of the array containing the animation). The
higher bit is set when the animation loops.

As you can see, lots of stu� need to be de�ned. Fortunately, a macro
and a procedure will help you to manage most common cases (and you
are strongly advised to use them in order to stay compatible with future
releases of the library).

4.2 Sprite creation

4.2.1 In data section

The macro data_simple_sprite de�nes a sprite in the DATA section of
your program. The parameters are:

1. name of the label created to reference the sprite (in your code)

2. name of the label where the graphical data are located

3. width in pixels of the image (it is assumed that DWIDTH= IWIDTH)

4. height in pixels of the image

5. depth of the image (should be one of O_DEPTH1, O_DEPTH2, ..., O_DEPTH32)

6. optionnal: X-coordinate (default 0)

7. optionnal: Y-coordinate (default 0)

When this macro is expanded, some sanity checks are performed about
the width.

6

4.2.2 Dynamically: in the heap

Thanks to the procedure new_simple_sprite, you can create dynamically
in the heap a sprite. In input, the register a0 contains the address of
the graphical data, d0 contains the data width in phrases (it is assumed
that DWIDTH = IWIDTH), d1 contains the height, d2 contains the X-
coordinate, d3 contains the Y-coordinate and d4 contains the data depth.
In output, a0 contains the address of the freshly created sprite.

4.2.3 Other kinds of sprites

It is highly recommended to �rst create a sprite with the help of one of
the two previously explained method and then change only the desired
values.

4.3 Object list creation

4.3.1 Branch objects

The procedure new_branch_object allows to freshly create branch objects.
A branch object can be seen as a �if-then-else� construction for object lists.
The procedure takes as argument in a0 the address of the �then� branch,
in a1 the address of the �else� branch, in d0 the Y-coordinate used by the
test condition and in d1 the condition for the test (which can be O_BREQ,
O_BRGT, O_BRLT or O_BRHALF). The register a0 will then contain the address
of the freshly created branch object.

As a facility, there is also a routine to create the �rst branch object
that should be at the beginning of every object lists. This procedure,
which is first_branch_object, need as arguments in a0 the address of
the stop object, in a1 the address of the object list, in d0 the value a_vdb
and in d1 the value a_vde. As before, the address of the branch object
is in a0 on return.

4.3.2 Sprite objects

Once a sprite is created using the previously explained methods, you need
to convert it in a sprite object (scaled or not) and this is done with the help
of the procedure finalize_sprite_object. This procedure allows to add
a sprite object at the beginning of an object list. In a0 is the address of
the sprite structure and in a1 is the address of the object list. You have to
understand that a sprite structure is also a sprite object (in OO language,
we would say that sprite structure inherit from sprite object).

4.3.3 Stop object

Once again, a macro is there to help you... With the macro data_stop_object,
you insert in the data section a STOP object.

4.3.4 Final warning

Once again, you should exclusively use the procedures described there to
stay compatible with next versions of this library (even for as dummy
objects as STOP ones!)

7

4.4 Refreshing objects

As we mentionned earlier, the refresh mechanism o�ered by this library are
rudimentary or not e�cient. Thus, it is of course possible to recompute all
the �elds of sprite objects thanks to the routine update_sprite_object

but you will probably prefer a faster refresh mechanism that just update
the �elds crashed by the OP or that only refresh in addition the coordi-
nates of the sprites. All the refresh routines takes in a0 the address of the
sprite structure. Here are the di�erent refresh mechanism o�ered by the
library:

• update_sprite_object: refresh all �elds (very slow)

• refresh_sprite_object: refresh only the crashed �elds (very fast)

• refresh_coords_sprite_object: refresh in addition the coordinates

• refresh_gfx_sprite_object: refresh in addition the DATA �eld

4.5 Animated sprites

If you use this library through the sprite manager, you will be able to
have animated sprites almost for free. The format of animation handled
by the sprite manager is simple but should be su�cient in most of the
cases.

The �eld SPRITE_ANIM_SPEED represents the number of calls of the
procedure refresh_sprite_list (see below) between the change of two
images of the sprite.

The sprite is animated if the address indicated by SPRITE_ANIM_ARRAY

is not null. In this case, it is the address of an array containing the address
of the sequence of images to be used for the animation. The array ends
by a null pointer.

For the moment, there is only one kind of animation available: cyclic
ones. We think it is su�cient to manage every kind of animation by using
an array of data pointers that encodes other kinds of animation (reversed
or ping-pong).

You have access to the index in the array of the currently used graph-
ical data through the variable SPRITE_ANIM_INDEX. You can also use this
�eld to test if the animation has looped or not.

To set a new animation, you can use the procedure set_sprite_animation
which takes in d0 the speed of the animation, in a0 the address of the sprite
and in a1 the address of the array.

To clear an animation, simply use the macro clear_sprite_animation
which takes as �rst argument an address register which points to the
sprite. In this case, do not forget to change the �eld SPRITE_DATA if
necessary... (this �eld is indeed modi�ed when animation is active)

You can also activate or deactivate an animation with the two macros
sprite_animation_on and sprite_animation_off which take as �rst ar-
gument an address register which points to the sprite.

5 The Sprite Manager

Here comes the master piece of code! With the sprite manager, you can
easily manage sprites by just adding them or removing them from the
sprite manager structure. A fast refresh mechanism (written in GPU
assembler) will allow you to have animated sprites very easily.

8

5.1 Initialisation of the sprite manager

The �rst thing to do is to initialise the sprite manager. That is the aim
of the init_sprite_manager procedure. This procedure copies the GPU
code and initialises the variable y_origin. The variable y_origin is
simply twice the variable a_vde. It is used by the object list manager
or the sprite manager to make the Y-coordinate 0 to be the top of the
visible data. Negative Y-coordinate are handled by the sprite manager
(only non-scaled sprites) o�ering some comfort to the game programmer.

5.2 Creating a new sprite list

Once the sprite manager is initialised, you can create a new sprite list with
the procedure new_sprite_list which gives you back in a0 the address
of the freshly created �list� (called after SM-structure).

The SM-structure is organized in 16 layers4 (this can be changed by
modifying the EQU in the library) so that sprites at layer 0 are under
those at layer 1 which are under those at layer 2 and so on...

5.3 Deleting a sprite list

You will probably need at a moment or another to free the memory allo-
cated by a SM-structure. This is what the procedure delete_sprite_list
exactly does. The address of the SM-structure is given in register a0. Of
course, the sprites contained in the SM-structure are not freed (since some
of them could be in DATA segment and thus not in the heap).

5.4 Adding a new sprite

With the procedure cons_sprite_at_depth, you can add a sprite to the
SM-structure. This procedure takes in a0 the address of the SM-structure,
in a1 the address of the sprite and in d0 the layer where to add it in the
SM-structure.

5.5 Removing a sprite

You can remove a sprite from the SM-structure it is attached to by us-
ing the procedure remove_sprite which takes as an argument in a0 the
address of the sprite and that's all!

5.6 Installing the sprite list

You can install the sprite list corresponding to the SM-structure with the
procedure install_sprite_list which takes in a0 the address of the SM-
structure. Installing means setting OLP so that your data are displayed
on screen.

5.7 Refreshing the list

The procedure refresh_sprite_list refreshes (with the help of the GPU)
all the sprites of the currently displayed SM-structure. (the address of the
current SM-structure is put in the variable current_sprite_list).

4we will also use the term depth or level to express this same concept

9

Since it could be harmful to add or remove a sprite while the SM-
structure is refreshed, there is a mutex (lock) attached to each SM-structure.
Your 68000 code can wait the SM-structure is refreshed with the procedure
wait_refresh_list which takes in a0 the address of the SM-structure.
Note that two consecutive calls to this synchronisation procedure will
hang your program! In the actual state of the code, we strongly think
that only sprite removal can lead to concurrency problems.

The refreshed �elds are DATA, XPOS, YPOS, HEIGHT, HSCALE, VSCALE and
REMAINDER.

5.8 Give me back the GPU, please!

Actually, the GPU is not completely stolen by the sprite manager (and as
far as I can say, it is far from that!). There is a GPU driver included in the
sprite manager library. This driver simply reads a parameter at variable
GPU_SUBROUT_ADDR and if it is not null, this represents the
address of a GPU subroutine to jump to. The routine should end by
giving hand back to the GPU driver. This is simply achieved by reading
the return address on the stack (r31) and jump to this address. The
following code implements this:

load (r31),r0

addq #4,r31

jump t,(r0)

nop

Registers need not to be preserved.
The refresh mechanism of the list is actually implemented by an in-

terruption. The interruption that refreshes the list does not save registers
(but actually, this could be changed very easily if needed). That is why
the GPU is set to use bank 1 when running normal GPU code and to use
bank 0 for the interrupt (so, to be more precise, only bank 0 is alterated
by the refresh interrupt).

So, to sum up, you can have your own GPU routines cohabiting
with the sprite manager refresh routine provided it only uses the active
bank of registers (i.e. bank 1) and ends with the code given above. Of
course, you should take care of not erasing the sprite manager and GPU
driver code. The available GPU ram for your custom routines starts at
GPU_FREE_RAM. The only other limitation is that you cannot use
GPU interrupts anymore.

You have also to know that stacks (user and interrupt ones) allocated
are really short (the default size is one long word). You might want to
change this but we do not see the reasons why you would want to.

5.9 Tell me more about the refresh mechanism...

The sprite manager can run in di�erent modes. The default one is to
use an OP interruption for refreshing the list (yes, GPU objects can
be useful!). In this case, it is not even necessary to call thee routine
refresh_current_list.

Unfortunately, this mode is not compatible with the Jaguar emulator
Project Tempest (GPU objects are not correctly emulated). Thus, if
you develop your project using Project Tempest, you will probably �nd
comfortable to be able to still use it. You can con�gure the sprite manager
so that it uses a CPU interrupt instead. In this case, you will need to call
the routine refresh_current_list.

10

For testing purpose, it is also possible to use the GPU driver to refresh
the list but we strongly recommend to not use this mode.

6 Joypad manager

The joypad manager o�ers you only the procedure read_joypads which
reads the state of the 8 joypads ports in the variable joypad_1, ...,
joypad_8. De�ned constants through EQU directives then help the pro-
grammer to test the current state of each joypad. Note that a pushed
button is indicated by a cleared bit and conversely.

7 Pseudo-random Numbers Generator

The pseudo-random number generator included is a ranrot generator. It
is based on the article Chaotic Random Number Generators with Random
Cycle Lengths of Agner Fog.

You have �rst to initialise the PRNG with the help of the procedure
random_init. Then, to get a new 32 bits pseudo-random number in
d0, simply call the procedure random_next. Note that there is also a
macro gpu_random_next that expands to GPU code that compute the
next pseudo-random number. This macro takes four arguments: the �rst
should be either r14 or r15, the second, third and fourth register are tem-
porary registers used to compute the new value which is then put in the
fourth argument.

8 Example of use

8.1 Making blobs with RMW mode

The piece of code below illustrates the usage of all these libraries (except
the joypad reading library). It implements shrinking and growing blobs.
The saturation is made by the OP thanks to the RMW bit in CRY mode.
The images have been converted with the image converter we have written
and which is available on our website.

.68000

.text

;; example of use of The Removers libraries

;; we do NB_BLOBS blobs with help of RMW mode of sprites

BLOB_W equ 48

BLOB_H equ 48

BLOB_RADIUS equ BLOB_W/2

;; unfortunately, the OP cannot manage more than that

NB_BLOBS equ 27

SIZE_STACK equ 4*1024

include "prelude.s"

;; init state

11

init_prg_state

;; memory init

;; the heap starts at the end of the BSS section

move.l #Bss_end,a0

move.l #INITSTACK-SIZE_STACK,a1

bsr mm_init

;; video init

bsr VideoIni

;; for the moment, nothing to display

move.l #stop_object,d0

swap d0

move.l d0,OLP

;; changing video mode

move.w #CRY16|CSYNC|BGEN|PWIDTH4|VIDEN,VMODE

;; interrupts init

bsr IntIni

;; background color (BLACK in CRY)

move.w #$8800,BG

main:

;; init the PRNG

bsr random_init

;; init the sprite manager

bsr init_sprite_manager

;; init the blobs

bsr init_blobs

;; install the list

move.l sm_list,a0

bsr install_sprite_list

;; we put the refresh routine in VBL

;; we can instead also call it after WaitVbl

installVblRoutine #refresh_sprite_list

.loop:

* move.w #$8888,BG ; to see available 68k time!

bsr WaitVbl

* move.w #$8800,BG

;; computing next frame

bsr do_blobs

bra.s .loop

rts

init_blobs:

;; compute center coordinates and clipping coordinates

move.l #blob_array,a3

move.w width,d0

lsr.w #2,d0 ; PWIDTH4

move.w d0,d1

sub.w #2*BLOB_RADIUS,d1

move.w d1,xmax

lsr.w #1,d0

sub.w #BLOB_RADIUS,d0

12

move.w d0,xcenter

move.w height,d0

move.w d0,d1

sub.w #2*BLOB_RADIUS,d1

move.w d1,ymax

lsr.w #1,d0

sub.w #BLOB_RADIUS,d0

move.w d0,ycenter

;; allocate the blobs sprites

moveq #NB_BLOBS-1,d7

.create_blob:

move.l #blob48_0_gfx,a0

move.w #BLOB_W/4,d0

move.w #BLOB_H,d1

move.w xcenter,d2

move.w ycenter,d3

move.w #O_DEPTH16,d4

bsr new_simple_sprite

move.l #O_TRANS|O_RMW,SPRITE_RELEASE_TRANS_RMW_REFLECT(a0)

move.l #O_RMW,SPRITE_RELEASE_TRANS_RMW_REFLECT(a0)

move.l a0,(a3)+

move.l #blob48_animation,a1

bsr random_next

move.l -4(a3),a0

and.w #%11,d0 ; random speed

bsr set_sprite_animation ; animate each blob

dbf d7,.create_blob

;; we now build the list through the sprite manager

;; get a new SM-structure

bsr new_sprite_list

move.l a0,sm_list ; save the address

;; inserts every blob

move.l #blob_array,a3

moveq #NB_BLOBS-1,d7

.create_list:

move.l (a3)+,a1 ; blob sprite

moveq #0,d0 ; at level 0

bsr cons_sprite_at_depth ; add it!

dbf d7,.create_list

rts

do_blobs:

;; compute next frame

move.l #blob_array,a3

moveq #NB_BLOBS-1,d7

moveq #0,d6

.refresh:

;; get a 32 bit random number

bsr random_next

move.w d0,d1

;; modulo 8

and.w #$7,d0

;; divide by two

lsr.w #1,d0

13

;; add the rotated bit

addx.w d6,d0

;; we have then a random number between 0 and 5 in d0

;; we get another random number between 0 and 5 in d1

lsr.w #8,d1

and.w #$7,d1

lsr.w #1,d1

addx.w d6,d1

;; here it is

;; we now translate them in -2 .. 3

subq.w #2,d0

subq.w #2,d1

;; get the blob sprite

move.l (a3)+,a0

;; get x

move.w SPRITE_XPOS(a0),d2

;; add random number

add.w d0,d2

;; and clip it

ble.s .reset_x

cmp.w xmax,d2

ble.s .ok_x

.reset_x:

move.w xcenter,d2

.ok_x:

;; save x

move.w d2,SPRITE_XPOS(a0)

;; same for y

move.w SPRITE_YPOS(a0),d3

add.w d1,d3

ble.s .reset_y

cmp.w ymax,d3

ble.s .ok_y

.reset_y:

move.w ycenter,d3

.ok_y:

move.w d3,SPRITE_YPOS(a0)

;; that's it!

dbf d7,.refresh

rts

.data

.phrase

blob48_0_gfx: incbin "blob48_0.cry"

.phrase

blob48_1_gfx: incbin "blob48_1.cry"

.phrase

blob48_2_gfx: incbin "blob48_2.cry"

.phrase

blob48_3_gfx: incbin "blob48_3.cry"

.phrase

blob48_4_gfx: incbin "blob48_4.cry"

.phrase

14

blob48_5_gfx: incbin "blob48_5.cry"

.phrase

blob48_6_gfx: incbin "blob48_6.cry"

.phrase

blob48_7_gfx: incbin "blob48_7.cry"

.phrase

blob48_8_gfx: incbin "blob48_8.cry"

.phrase

blob48_9_gfx: incbin "blob48_9.cry"

.phrase

blob48_10_gfx: incbin "blob48_10.cry"

.phrase

blob48_11_gfx: incbin "blob48_11.cry"

.phrase

blob48_12_gfx: incbin "blob48_12.cry"

blob48_animation:

;; ping-pong animation for the blobs

dc.l blob48_0_gfx

dc.l blob48_1_gfx

dc.l blob48_2_gfx

dc.l blob48_3_gfx

dc.l blob48_4_gfx

dc.l blob48_5_gfx

dc.l blob48_6_gfx

dc.l blob48_7_gfx

dc.l blob48_8_gfx

dc.l blob48_9_gfx

dc.l blob48_10_gfx

dc.l blob48_11_gfx

dc.l blob48_12_gfx

dc.l blob48_11_gfx

dc.l blob48_10_gfx

dc.l blob48_9_gfx

dc.l blob48_8_gfx

dc.l blob48_7_gfx

dc.l blob48_6_gfx

dc.l blob48_5_gfx

dc.l blob48_4_gfx

dc.l blob48_3_gfx

dc.l blob48_2_gfx

dc.l blob48_1_gfx

dc.l 0

.bss

.even

xmax: ds.w 1

xcenter: ds.w 1

ymax: ds.w 1

ycenter: ds.w 1

;;

.long

sm_list: ds.l 1

;; blobs

15

.long

blob_array: ds.l NB_BLOBS

Bss_end:

8.2 A�ne transformation with the blitter

In the o�cial distribution of The Removers'libraries, you can also �nd an
example of use of the blitter. It uses the joypad library and shows you
how to set common variables for making a�ne transformations (such as
rotations for example) with the blitter.

The equation of the a�ne transformation displayed is(
X
Y
1

)
=

(
a b e
c d f
0 0 1

)(
X ′

Y ′

1

)
where X, Y are the source coordinates and X ′, Y ′ are the target coordi-
nates.

See the source code for more details.

9 Summary

Here we sum up every (public) procedure/macro and their parameters.
When nothing is written for output registers, this means that the routine
does not save them nor restore them but use them.

9.1 init.s

1. Name init_prg_state

Input none
Output none
Note macro

2. Name copy_code

Input d0 size (long word aligned)
a0 source address
a1 target address

Output d0
a0
a1

Note

3. Name VideoIni

Input none
Output a_vde

a_vdb
a_hde
a_hdb
width
height
y_origin

Note y_origin is used by the sprite manager to handle negative Y-coordinates

4. Name IntIni

Input none
Output none
Note

16

5. Name installVblRoutine

Input 1st arg address of custom VBL routine
Output VblRoutineAddr
Note macro

6. Name clearVblRoutine

Input none
Output VblRoutineAddr
Note macro

7. Name VblRoutine

Input none
Output none
Note generic VBL routine

8. Name WaitVbl

Input none
Output none
Note VBL synchronisation

9.2 memory.s

1. Name mm_init

Input a0 heap address start
a1 heap address end

Output d0 MM_OK or MM_ERROR
d1
d2
a0
a1

Note

2. Name mm_reset

Input none
Output see mm_init
Note

3. Name mm_alloc

Input d0 desired size of the block
Output d0

d1
d2
a0 address of the freshly allocated block in the heap (or null if impossible)
a1
a2

Note actually, it will result in an illegal instruction if memory allocation is impossible

4. Name mm_alloc_clear

Input same as mm_alloc
Output same as mm_alloc
Note in addition, the block is cleared

17

5. Name mm_free

Input a0 address of the block to free
Output d0

d1
d2
a0
a1
a2

Note the given address should be valid

9.3 object_list.s

1. Name data_simple_sprite

Input 1st arg sprite label name (created)
2nd arg graphical data label
3rd arg width (in pixels)
4th arg height (in pixels)
5th arg depth of data
6th arg X-coordinate (optionnal)
7th arg Y-coordinate (optionnal)

Output none
Note macro expanded in DATA segment

2. Name data_stop_object

Input 1st arg stop object label name (created)
Output none
Note macro expanded in DATA segment

3. Name new_branch_object

Input d0 YPOS
d1 condition code
a0 �then� object
a1 �else� object

Output d0
d1
a0 address of the freshly created branch object
a1

Note

4. Name first_branch_object

Input d0 a_vdb
d1 a_vde
a0 address of STOP object
a1 address of object list

Output d0
d1
a0 address of the freshly created branch object
a1

Note

5. Name update_sprite_object

Input a0 sprite address
Output none
Note full refresh of sprite �elds

18

6. Name finalize_sprite_object

Input a0 sprite address
a1 link address

Output none
Note

7. Name fast_refresh_nonscaled_sprite_object

Input 1st arg address register (sprite address)
Output 1st arg
Note macro

8. Name fast_refresh_scaled_sprite_object

Input 1st arg address register (sprite address)
Output 1st arg
Note macro

9. Name refresh_sprite_object

Input a0 sprite address
Output a0
Note fast refresh of scaled sprites

10. Name fast_refresh_coords_nonscaled_sprite_object

Input 1st arg address register (sprite address)
2nd arg data register
3rd arg data register

Output 1st arg
2nd arg
3rd arg

Note macro

11. Name fast_refresh_coords_scaled_sprite_object

Input 1st arg address register (sprite address)
2nd arg data register
3rd arg data register

Output 1st arg
2nd arg
3rd arg

Note macro

12. Name refresh_coords_sprite_object

Input a0 sprite address
Output a0

d0
d1

Note refresh coords of scaled sprites

13. Name refresh_gfx_sprite_object

Input a0 sprite address
Output d0

d1
a0
a1

Note refresh DATA of scaled sprites

19

14. Name new_simple_sprite

Input d0 width (in phrases)
d1 height (in pixels)
d2 X-coordinate
d3 Y-coordinate
d4 depth of graphical data
a0 graphical data address

Output a0 address of freshly created sprite
Note

15. Name set_sprite_animation

Input d0 animation speed
a0 sprite address
a1 animation array address

Output none
Note

16. Name clear_sprite_animation

Input 1st arg address register
Output none
Note macro

17. Name sprite_animation_on

Input 1st arg address register
Output none
Note macro

18. Name sprite_animation_off

Input 1st arg address register
Output none
Note macro

9.4 sprite_manager.s

1. Name init_sprite_manager

Input none
Output d0

a0
a1

Note

2. Name new_sprite_list

Input none
Output a0 address of freshly created SM-structure
Note

3. Name wait_refresh_list

Input a0
Output a0
Note two consecutive calls (without a refresh between) will hang your program

4. Name cons_sprite_at_depth

Input d0 level (also called depth)
a0 SM-structure address
a1 sprite address

Output none
Note

20

5. Name remove_sprite

Input a0 sprite address
Output none
Note

6. Name delete_sprite_list

Input a0 SM-structure address
Output none
Note sprites are (of course) not freed

7. Name install_sprite_list

Input a0 SM-structure address
Output none
Note

8. Name refresh_sprite_list

Input none
Output none
Note

9. Name JumpGPUSubRoutine

Input 1st arg address of the subroutine in GPU ram
Output none
Note a macro that tells the GPU driver to execute a GPU subroutine

9.5 joypad.s

1. Name read_joypads

Input none
Output joypad_1

joypad_2
joypad_3
joypad_4
joypad_5
joypad_6
joypad_7
joypad_8

Note use de�ned EQUs to test joypad states after!

9.6 random.s

1. Name random_init

Input none
Output none
Note call this before using the PRNG

2. Name random_next

Input none
Output d0 new 32 bits pseudo-random number

d1
d2
a0

Note

21

3. Name gpu_random_next

Input 1st arg r14 or r15
2nd arg a register
3rd arg a register
4th arg a register

Output 1st arg
2nd arg
3rd arg
4th arg new 32 bits pseudo-random number

Note GPU macro

9.7 prelude.s

Just include prelude.s at the beginning of your program. It will include
all the libraries (and jaguar.inc) at the very beginning of the text segment
and a label start is created after all the included code (this is necessary to
jump over the included code). See the example to see how this is intended
to be used.

10 Future work

Of course, these libraries are not perfect and maybe still contain bugs. For
these reasons, we are interested in feedback concerning the use of these
libraries. You can join me on the Jagware forum (or see my email on my
website).

One improvement which could be great for game developper is the
full support of scaled sprites (instead of limited support as in the current
library).

Another improvement we could envisage is to add some kind of support
for collision tests. For the moment, it is not clear to us how to integrate
this in the library (but we have a GPU routine that do the collision test).

Finally, we envisage also to add double bu�ering to our sprite manager
but obviously it is quite a big amount of additionnal work.

Your comments, questions and suggestions are welcome. Feel free to
write to SebRmv_@_jagware.org (remove _ to get the right email address).

11 Final words

I would like to thank particularly GT Turbo for the interesting discussions
we had and the ideas that have outcome from them. I would like also to
thank SCPCD, Zerosquare, Mariaud, Azrael, Fredifredo, Orion_, MK,
Fadest, Mathias Domin and of course Stabylo.

22

